Mechanics (PHYC 190)  Orbital Quadrature
Purpose

A mathematical technique called quadrature will be employed to simulate
the orbit of a planet around a central gravitational force. Experimentation will then
proceed on the mathematical model in place of actual celestial objects.

Background

Newton’s Law of Gravitation constrains the possible shapes of orbits.
Unfortunately, real objects in orbits tend to require far too long an observational
period to work as a single, practical laboratory activity. Instead, it is possible to
explore orbits using quadrature and computer simulation.

Quadrature is the iterative approximation of an integral-based mathematical
equation using small intervals of the independent variable(s) to compute changes in
the dependent variable(s).! For example, the Free Body Diagram of
an object of mass m falling while undergoing linear drag is shown at bu
right. Using Newton’s Second Law and summing the forces in the
downward direction yields mg—bu=ma. Since the acceleration a is

du b
the derivative of the speed u, this can be written as —=g——u. mg

dt m

While it is possible to solve this equation for the speed explicitly, it is far
easier to replace the derivatives with deltas and find the change in u for finite time

increments: Au= [g—%u}At. Once this value is found, the next iteration of u is the

last value plus Au, and the result is then used in computing yet another iteration. As
long as the fixed value for At is very small, the results will be a good approximation
to the true function.

Suppose an object of mass m is in orbit about a central mass my located at the
origin. The gravitation force vector depends on the position: F = —FGmmO /r?, where

F=X*+y~, and r=+/x*+y*. According to Newton’s 2d Law, the acceleration of

this mass will be a=F /m= —meO /r?. The change in velocity is therefore the time

A

erO
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the integral will be replaced by the function multiplied by a small time interval At.
This will be much easier to understand, however, if the x- and y-components are
dealt with separately.

integral of this acceleration: Au= ja dt = —'[ dt . To evaluate this by quadrature,

Using the definition of r-hat above, the x-component of acceleration is
aX:—Gmox/r3. The x-component of the change in velocity is therefore
Gm x

r3

Au = —J dt , which becomes Au =Gm xAt /r°.



The delta on the left in the final equation above is u —u, by definition,

where uox is the x-component of velocity from the previous iteration; therefore
u :—GmoxAt/r3+u0X. This is needed to find the x-component of position since

displacement Ax is the time integral of ux. Once again, the integral will be replace
with simple multiplication by the time interval At. To avoid confusion between the
two instances of x that will appear, all prior-iteration values from the equation will

receive a subscript zero: u = —Gmoont/rO3 +u, . The result of multiplying this by

delta-t again is sz—Gmoontz/r03+u0XAt. This is the incremental change in x

during each iteration. The incremental change in y is of the corresponding form.

Looking at this formula, a number of parameters are needed to begin
computing iterations of x and y. Specifically, constant values must be chosen for mo
and At, and starting values are needed for xo, yo, Uox, and ugy. Assuming all of these
are known, one iteration of the quadrature consists of the following steps. First, ro is
found from xo and yo. Second, x and y are found from Xxo, Yo, ro, Uox, and ugy. Third, ux
and uy are found from xo, yo, ro, Uox, and uoy. Last, to prepare for the new iteration, x is
now called xo, y becomes yo, ux becomes uox, and u, becomes ugy.

Procedure

Programming languages take a long time to learn, but the quadrature needed
for this lab can be performed using a much friendlier tool: Microsoft Excel.2 Find this
program in the main applications menu and open it. When it inquires, select “Blank
Excel Workbook.”

Excel is a spreadsheet application, so the window will show a white sheet
with black gridlines after it finishes loading. The grid will be composed of
rectangular cells. Data or equations can be entered into these cells, and each cell has
a unique address labeled by the letter at the top of its column and the number at the
left of its row. The upper-left cell, for example, is A1.

1. For simplicity, the starting orbital radius of the planet being modeled here is
1 unit. Click in cell A1 and type 1 followed by return. This is the starting x
coordinate of the planet. The starting y coordinate will be in cell B, and its
value will be 0.

2. The planet needs starting velocity components as well or it will simply fall
straight into the sun. The planet is starting out directly to the right of the sun
on the standard xy-plane, so it needs to move in the y direction to attempt an
orbit. Enter 0 into cell €1 and 1 into cell DI. These are uox and uoy,
respectively.



. It will be necessary to know the planet’s current distance from the origin for
the next iteration (which will happen on the next row). Cell E1 will therefore
contain the first actual calculation of this spreadsheet. The formula is

= 1/xg + yé , but Excel would have no idea what these variables are. Instead,

it must be given the cell addresses where they can be found (A1 and B1I). In
cell E1, enter =sqrt (A1"2+B1"2) and be sure to include the equals sign so
that Excel knows it is supposed to do a calculation rather than just display
the text of the formula. A number will appear in the cell if the equation was
entered correctly. If it was not, simply click on the cell again and reenter the
formula.

. It's now time to start the iteration process. The second row of five columns
will all be calculations based on the quadrature formulas derived in the
Background section above. For simplicity in this assignment, the universe in
which this planet exists has a universal gravitational constant of 1, and the
star’'s mass will also be 1. The time increment At doesn’t need to be
exceedingly small: 0.01 will suffice for this simulation. The new value for x is

therefore x=-x,0.01° /r’ +u, 0.01+x,. Click on cell A2 and then enter the

formula =-A1*0.01"2/E1"3+C1*0.01+A1 to compute the new x-
location. (The asterisks are there to indicate multiplication and Excel
becomes confused without them.) The formula for the new y-location in cell
B2is=-B1*0.01"2/E1"3+D1*0.01+B1.

. New velocity components will be needed for the next iteration. In cell C2,
enter =-A1*0.01/E1"3+C1 and in cell D2 enter =-B1*0.01/E1"3+D1.

. Cell EZ needs to contain the new orbital radius. Rather than retyping the
formula used in cell E1 with the new values of A2 and B2, it is much more
convenient to take advantage of Excel’s design: Click on cell E1, then move
the cursor up to the Edit menu at the top of the screen, and click and drag
down to Copy, and release the mouse button. Now click on cell EZ, then click
and drag on the Edit menu down to Paste and release. Excel will
automatically fill cell EZ with a location-adjusted copy of the old formula. A
new number should appear there and now all five cells of row 2 on the page
will have numbers in them if everything has gone right so far.

. Fully one thousand rows of values are needed for this simulation. Even doing
this by copying and pasting would take hours. Instead, there is a much easier
way: Click and drag from somewhere in cell A2 to somewhere in cell EZ to
highlight the row of values (and their hidden formulae), and release the
mouse button. Now move the cursor over to the bottom right corner of cell
E2 and the white plus sign cursor should turn black. While it is black, click
and drag straight down, off the bottom of the page, and Excel will start
scrolling down the sheet. Don’t release the mouse button until row 1000 is
reached. A dashed box will be visible to guide this process. The sheet should
now contain a block of numbers five columns wide and 1000 columns tall.



8. Itis now time to graph the coordinates. Go back to the top of the sheet using
the scroll bar on the right side of the screen, and find the letter A at the top of
the first column. Click and drag from somewhere in that box to somewhere in
the box beside it containing B, then release. This will select the x- and y-
values from the entire sheet. Now go up to the menu bar at the top of the
screen and click and drag on Insert down to Chart, and release. Just above the
column letters, a list of chart types will appear. Click X Y (Scatter) and then
Marked Scatter and a graph should appear on the sheet somewhere.

9. The graph isn’t set up appropriately for this project. It needs to be resized
and rescaled. Click and drag the very lower-right corner of the graph to
reshape it into a square instead of a rectangle. Once this is done, click on the
words Series 1 inside the chart and then hit the delete key to remove the
chart legend. Now double-click on any number in the vertical (y) axis to open
up the axis formatting window and look for the word Scale on the left side of
the window and click it. The result should be five text input areas for the
chart’'s minimum, maximum, units, and axis-crossing. Click in the first of
these, delete the number there, and replace it with -2. Click in the second,
third, and fourth and replace them each with 2, and the last with 0. Each time,
a checkbox will be automatically deselected, which will keep Excel from
continually reshaping the chart each time the data values change, as this
would be confusing. Now click OK in the lower right of the formatting
window, and then do the same process with the horizontal axis.

Questions

The finished chart should show a circular orbit with a radius of 1 unit. The
benefit of using Excel is that any change made to the starting values of xo, yo, tox, and
uoy in cells A1, B1, C1, and D1 will automatically update the entire array of values and
the plotted points on the chart. This will make it easy to explore orbits.

1. Change the value of ugy in cell DI to 0.5 by clicking on that cell, typing the
new value, and pressing return. Observe the new orbit. Explain why an object
starting with a slower orbital speed from the same position would behave
this way.

2. Change the value of ug, to 1.15 and observe that the orbit appears
incomplete. Explain what has caused this.

3. Change ugy to 0.3 and observe the behavior. Is this a result of the simulation’s
limitations or could a planet actually do this? To answer the question, try a
value of 0.2 instead and attempt to determine what appears to have
happened to the planet. Remember that the planet started out in an orbit
with a very limited amount of energy due to the very low speed.

4. Change uox in cell C1 to -0.7 (instead of zero), and uoy to 0.7 and observe the
result. What is different this time from the orbit in Question 1 above?



5. Change uox to -0.5 and ugy to 1.5 and observe that the “orbit” seems to get
straighter as it moves away. Will the planet ever come back, and if not, why
not? (Recall that orbits around central forces are conic sections, and there
are other conic sections besides just circles and ellipses.)

6. One form of Kepler’s Third Law of planetary motion can be derived by
creating a free-body diagram for a planet in a circular orbit due to
gravitational attraction. Do this for the simulated solar system with G and mo
set to 1. Use the results to predict the initial speed uoy, required to establish a
circular orbit of radius 0.5. Test this prediction by setting xo in cell A1 to 0.5,
Uox to 0, and uoy to the predicted value and looking at the simulated results.

7. Based on the equation derived in Question 6, should the planet Mercury in its
circular orbit close to the sun be expected to move faster than planet
Neptune in its circular orbit very far from the sun, or should it instead be
expected to move more slowly?

8. Set uox and uoy to zero and observe the result. If a real planet in orbit around a
real star stopped like this for some reason, could it possibly behave that way,
and if not, why not?

9. Set xo to 1 and ugy to -1 and observe the result. Consider the implications of
this setting. Could a planet really do this, and if not, why not?

10. When in an elliptical orbit, a planet’s farthest distance from the sun is called
aphelion (rmax) and its closest distance is called perihelion (rmin). The
eccentricity (e) of the orbit is a number between zero and one that describes

r _
how elliptical it is, zero being circular.? It can be shown that e = =& Set
r +r_
uoy to 0.6 and scroll down through the spreadsheet to find the x-value when
the y-value switches from positive to negative. (Interpolate between the two
values on either side of this change.) This result will give the negative of the
perihelion distance. The aphelion distance is 1 since that is the value of xo

when yo is zero. Use these apsidal distances to compute the eccentricity.
Report Tips

It is impractical to copy the entire numerical table from Excel into a lab
report. To copy a chart from Excel, however, it is wisest to save it as a picture by
right-clicking near the very top and a menu option will appear to save it in a format
such as PNG. The saved picture, when copied and pasted into the document, will not
change when further alterations are made in the Excel file.
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